Photonics Research | 2019

Acousto-optical modulation of thin film lithium niobate waveguide devices

 
 
 
 
 
 
 

Abstract


Due to its strong piezoelectric effect and photo-elastic property, lithium niobate is widely used for acousto-optical applications. However, conventional bulk lithium niobate waveguide devices exhibit a large footprint and limited light–sound interaction resulting from the weak guiding of light. Here, we report the first acousto-optical modulators with surface acoustic wave generation, phononic cavity, and low-loss photonic waveguide devices monolithically integrated on a 500\xa0nm thick film of lithium niobate on an insulator. Modulation efficiency was optimized by properly arranging the propagation directions of surface acoustic waves and optical guided modes. The effective photo-elastic coefficient extracted by comparing the first and third harmonic modulation signals from an on-chip Mach–Zehnder interferometer indicates the excellent acousto-optical properties of lithium niobate are preserved in the thin film implementation. Such material property finding is of crucial importance in designing various types of acousto-optical devices. Much stronger amplitude modulation was achieved in a high Q (>300,000) optical resonator due to the higher optical sensitivity. Our results pave the path for developing novel acousto-optical devices using thin film lithium niobate.

Volume 7
Pages 1003-1013
DOI 10.1364/PRJ.7.001003
Language English
Journal Photonics Research

Full Text