Optics express | 2019

Fractional vortex ultrashort pulsed beams with modulating vortex strength.

 
 

Abstract


In most papers about the fractional vortex continuous beams (FVCBs), the relationship between the total vortex strength Sα and the propagation distance is not analyzed since the vortex structure is not stable in the near field. In this paper, we theoretically study the fractional vortex ultrashort pulsed beams (FVUPBs) possessing non-integer topological charges α at arbitrary plane and find that the vortex structure is propagation-distance-dependent. Both the intensity and phase distributions are calculated to analyze the vortex structure. To evaluate the propagation properties of FVUPBs, we focus on the total vortex strength (TVS) of FVUPBs to investigate the number of vortex, and demonstrate that the birth of a vortex is at α\u2009=\u2009m\u2009+\u2009ɛ, where m is an integer, ɛ is a changing fraction depending on the pulse durations, peak wavelengths and propagation distances. Furthermore, we discover that the FVUPBs carry decreasing TVS along the propagation axis in free space. This special vortex structure for FVUPBs appears due to the mixture weight of vortex pulsed beam with different integer topological charges (TCs) n. However, the total orbital angular momentum is invariant during propagation. The above phenomenon presented in our paper are totally particular and intriguing compared with the FVCBs.

Volume 27 25
Pages \n 36259-36268\n
DOI 10.1364/oe.27.036259
Language English
Journal Optics express

Full Text