Optics express | 2021

Zero GVD slow-light originating from a strong coupling of one-way modes in double-channel magneto-optical photonic crystal waveguides.

 
 
 
 

Abstract


We have studied the coupling effect of topological photonic states in a double-channel magneto-optical photonic crystal waveguide by introducing a two-stranded ordinary Al2O3 photonic crystal as the coupling layer. There exist both M1 (odd) and M2 (even) one-way modes simultaneously in the bandgap. Interestingly, M1 mode is always a fast-light mode with large group velocity (vg) and large group velocity dispersion (GVD) regardless what the radius (RA) of Al2O3 rods is. However, when RA is appropriate, M2 mode becomes a very slow-light mode exhibiting near-zero vg and zero GVD simultaneously. The physical reason of such slow-light is attributed to the strong coupling effect between the one-way edge modes in both sub-waveguides. Furthermore, the simulation results show that the robustness of both the fast- and slow-light modes are extremely strong against perfect electric conductor defect and the one-way transmittance is close to 100%. Besides, the PEC defect can cause significant phase delay. These results hold promise for many fields such as signal processing, optical modulation, and the design of various topological devices.

Volume 29 2
Pages \n 2478-2487\n
DOI 10.1364/oe.412460
Language English
Journal Optics express

Full Text