PLoS Computational Biology | 2021

Accumulation of continuously time-varying sensory evidence constrains neural and behavioral responses in human collision threat detection

 
 
 
 

Abstract


Evidence accumulation models provide a dominant account of human decision-making, and have been particularly successful at explaining behavioral and neural data in laboratory paradigms using abstract, stationary stimuli. It has been proposed, but with limited in-depth investigation so far, that similar decision-making mechanisms are involved in tasks of a more embodied nature, such as movement and locomotion, by directly accumulating externally measurable sensory quantities of which the precise, typically continuously time-varying, magnitudes are important for successful behavior. Here, we leverage collision threat detection as a task which is ecologically relevant in this sense, but which can also be rigorously observed and modelled in a laboratory setting. Conventionally, it is assumed that humans are limited in this task by a perceptual threshold on the optical expansion rate–the visual looming–of the obstacle. Using concurrent recordings of EEG and behavioral responses, we disprove this conventional assumption, and instead provide strong evidence that humans detect collision threats by accumulating the continuously time-varying visual looming signal. Generalizing existing accumulator model assumptions from stationary to time-varying sensory evidence, we show that our model accounts for previously unexplained empirical observations and full distributions of detection response. We replicate a pre-response centroparietal positivity (CPP) in scalp potentials, which has previously been found to correlate with accumulated decision evidence. In contrast with these existing findings, we show that our model is capable of predicting the onset of the CPP signature rather than its buildup, suggesting that neural evidence accumulation is implemented differently, possibly in distinct brain regions, in collision detection compared to previously studied paradigms.

Volume 17
Pages None
DOI 10.1371/journal.pcbi.1009096
Language English
Journal PLoS Computational Biology

Full Text