PLoS Medicine | 2021

Impact of color-coded and warning nutrition labelling schemes: A systematic review and network meta-analysis

 
 
 
 
 
 
 
 
 
 

Abstract


Background Suboptimal diets are a leading risk factor for death and disability. Nutrition labelling is a potential method to encourage consumers to improve dietary behaviour. This systematic review and network meta-analysis (NMA) summarises evidence on the impact of colour-coded interpretive labels and warning labels on changing consumers’ purchasing behaviour. Methods and findings We conducted a literature review of peer-reviewed articles published between 1 January 1990 and 24 May 2021 in PubMed, Embase via Ovid, Cochrane Central Register of Controlled Trials, and SCOPUS. Randomised controlled trials (RCTs) and quasi-experimental studies were included for the primary outcomes (measures of changes in consumers’ purchasing and consuming behaviour). A frequentist NMA method was applied to pool the results. A total of 156 studies (including 101 RCTs and 55 non-RCTs) nested in 138 articles were incorporated into the systematic review, of which 134 studies in 120 articles were eligible for meta-analysis. We found that the traffic light labelling system (TLS), nutrient warning (NW), and health warning (HW) were associated with an increased probability of selecting more healthful products (odds ratios [ORs] and 95% confidence intervals [CIs]: TLS, 1.5 [1.2, 1.87]; NW, 3.61 [2.82, 4.63]; HW, 1.65 [1.32, 2.06]). Nutri-Score (NS) and warning labels appeared effective in reducing consumers’ probability of selecting less healthful products (NS, 0.66 [0.53, 0.82]; NW,0.65 [0.54, 0.77]; HW,0.64 [0.53, 0.76]). NS and NW were associated with an increased overall healthfulness (healthfulness ratings of products purchased using models such as FSAm-NPS/HCSP) by 7.9% and 26%, respectively. TLS, NS, and NW were associated with a reduced energy (total energy: TLS, −6.5%; NS, −6%; NW, −12.9%; energy per 100 g/ml: TLS, −3%; NS, −3.5%; NW, −3.8%), sodium (total sodium/salt: TLS, −6.4%; sodium/salt per 100 g/ml: NS: −7.8%), fat (total fat: NS, −15.7%; fat per 100 g/ml: TLS: −2.6%; NS: −3.2%), and total saturated fat (TLS, −12.9%; NS: −17.1%; NW: −16.3%) content of purchases. The impact of TLS, NS, and NW on purchasing behaviour could be explained by improved understanding of the nutrition information, which further elicits negative perception towards unhealthful products or positive attitudes towards healthful foods. Comparisons across label types suggested that colour-coded labels performed better in nudging consumers towards the purchase of more healthful products (NS versus NW: 1.51 [1.08, 2.11]), while warning labels have the advantage in discouraging unhealthful purchasing behaviour (NW versus TLS: 0.81 [0.67, 0.98]; HW versus TLS: 0.8 [0.63, 1]). Study limitations included high heterogeneity and inconsistency in the comparisons across different label types, limited number of real-world studies (95% were laboratory studies), and lack of long-term impact assessments. Conclusions Our systematic review provided comprehensive evidence for the impact of colour-coded labels and warnings in nudging consumers’ purchasing behaviour towards more healthful products and the underlying psychological mechanism of behavioural change. Each type of label had different attributes, which should be taken into consideration when making front-of-package nutrition labelling (FOPL) policies according to local contexts. Our study supported mandatory front-of-pack labelling policies in directing consumers’ choice and encouraging the food industry to reformulate their products. Protocol registry PROSPERO (CRD42020161877).

Volume 18
Pages None
DOI 10.1371/journal.pmed.1003765
Language English
Journal PLoS Medicine

Full Text