PLoS ONE | 2019

Dragonflies community assembly in artificial habitats: Glimpses from field and manipulative experiments

 
 
 

Abstract


Several factors act on community structure, so determining species composition and abundance patterns. Core processes operating at local scales, such as species-environment matching and species interactions, shape observed assemblages. Artificial habitats (simplified structure) are useful systems for assessing the main factors affecting community composition and disentangling their assembly rules. Drinking troughs (brickwork tanks for free-ranging cattle watering) are widespread in Italy and represent a suitable aquatic habitat for colonization by various aquatic organisms. Dragonflies larvae are usually found in drinking troughs and often exhibit strong species interactions and striking community assembly patterns. Our primary aim was to search for Odonata communities exhibiting non-random co-occurrence/segregation patterns in drinking troughs. We performed null-model analyses by measuring a co-occurrence index (C-score) on larval Odonata assemblages (13 species from 28 distinct troughs). Overall, we found a non-random structure for the studied dragonfly assemblages, which, given their fast generation time, must have been generated by short-term ecological processes (i.e. interspecific interactions). We thus analyzed potential competition/predation among and within ecological guilds. From the field data, we speculated that interactions within the sprawlers’ guild is likely among the main drivers structuring the studied assemblages, especially the effect of intraguild predation between C. erythraea and Sympetrum spp larval stages. We then experimentally tested these interactions in laboratory and demonstrated that intraguild predation among larvae at different development stages may result in an effective exclusion/negative impact on density pattern, representing one of the processes to take into consideration when studying dragonfly assemblages.

Volume 14
Pages None
DOI 10.1371/journal.pone.0214127
Language English
Journal PLoS ONE

Full Text