Corrosion Reviews | 2021

Corrosion inhibitory effect of mixed cocoa pod-Ficus exasperata extract on MS in 1.5 M HCl: optimization and electrochemical study

 

Abstract


Abstract This paper investigated optimization of corrosion inhibitory attributes of mixed cocoa pod-Ficus exasperata (CP-FE) extracts towards mild steel in 1.5 M HCl using central composite design. Potentiodynamic polarization, linear polarization resistance and electrochemical impedance spectroscopy measurements were used for the electrochemical study. The result revealed maximum inhibition efficiency of 91.52% at temperature, inhibitor concentration, time and acid concentration of 50 °C, 5 g/L, 144 h and 0.2 M, respectively with R2 value of 0.9429. Central composite design predicted optimum point of 70.37 °C, 3.81 g/L, 127.37 h and 0.22 M. Potentiodynamic polarization revealed extract to be mixed-type inhibitor with anodic prevalence. Electrochemical impedance spectroscopy showed that corrosion inhibition occurred via adsorption of CP-FE molecules on active sites of MS surface. Scanning electron microscopy images revealed protection of mild steel surface by adsorbed molecules of CP-FE extracts. Fourier transform infrared revealed presence of carboxyl (–COOH), unsaturated (–C-C–) and hydroxyl (–OH). Energy dispersive spectroscopy revealed presence of high iron composition on mild steel surface in the presence of mixed CP-FE extract proving its corrosion inhibition efficiency in 1.5 M HCl. Atomic adsorption spectroscopy revealed loss of Fe2+ into free HCl solution. Generally, extract from mixed CP-FE was found as effective corrosion inhibitor for mild steel in 1.5 M HCl solution.

Volume 39
Pages 109 - 122
DOI 10.1515/corrrev-2019-0077
Language English
Journal Corrosion Reviews

Full Text