Open Physics | 2019

Vibration Analysis of a Three-Layered FGM Cylindrical Shell Including the Effect Of Ring Support

 
 
 
 

Abstract


Abstract In this work, we study vibrations of three-layered cylindrical shells with one ring support along its length. Nature of material of the central layer is a functionally graded material (FGM) type. The considered FGM is of stainless steel and nickel. The internal and external layers are presumed to be made of isotropic material i.e., aluminum. The functionally graded material composition of the center layer is assorted by three volume fraction laws (VFL) which are represented by mathematical expressions of polynomial, exponential and trigonometric functions. The implementation of Rayleigh-Ritz method has been done under the Sanders’ shell theory to obtain the shell frequency equation. Natural frequencies (NFs) are attained for the present model problem under six boundary conditions. Use of characteristic beam functions is made for the estimation of the dependence of axial modals. The impact of layer material variations with ring support is considered for many ring positions. Also the effect of volume fraction laws is investigated upon vibration characteristics. This investigation is performed for various physical parameters. Numerous comparisons of values of shell frequencies have been done with available models of such types of results to verify accuracy of the present formulation and demonstrate its numerical efficiency.

Volume 17
Pages 587 - 600
DOI 10.1515/phys-2019-0060
Language English
Journal Open Physics

Full Text