Journal of Polymer Engineering | 2021

Analysis of the skin wrinkling in out-of-plane joints of CFRP hat-shaped structure

 
 
 
 
 
 
 
 
 

Abstract


Abstract Out-of-plane joints, between hat (omega) stiffeners and skin panels are asymmetric parts of the composite structure. Studies show that physical-mechanical conditions in these joints significantly affect skin forming quality. In the present article, aimed to investigate the mechanism of the skin wrinkle in the joints of carbon fiber reinforced plastics (CFRP) hat-shaped structure, the pressure testing apparatus based on the Pascal principle is used to surveillance the resin pressure dynamically in out-of-plane joints. In this regard, several influencing factors such as first-order holding time, forming pressure and relative volume of unidirectional fillers are studied. Obtained results show that increasing the first stage holding time can prolong the viscous flow state of the resin, and time to achieve pressure equalization at each detection point, thereby improving the dispersion of the pressure and reducing the possibility of wrinkles. It is found that as the forming pressure increases, the degree of skin wrinkles in the out-of-plane joints ameliorates. Moreover, for fillers with a relative volume within the range of 0–50%, the pressure transfer effect and the skin flatness is relatively dissatisfactory. It is concluded that the filler with a relative volume of 80–120% improves the skin wrinkle in out-of-plane joints.

Volume 41
Pages 310 - 319
DOI 10.1515/polyeng-2020-0261
Language English
Journal Journal of Polymer Engineering

Full Text