Zeitschrift für Physikalische Chemie | 2019

Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method

 
 
 
 

Abstract


Abstract The 50 nm thickness Zn-doped polyvinyl alcohol (PVA) was deposited on n-4H-SiC semiconductor as interlayer by electro-spinning method and so Au/Zn-doped PVA/n-4H-SiC metal-polymer-semiconductor (MPS) structure were fabricated. The real and imaginary parts of the complex dielectric constant (ε′, ε′′), loss-tangent (tan δ), the real and imaginary parts of the complex electric modulus (M′, M′′) and ac electrical conductivity (σac) behavior of this structure were examined using impedance spectroscopy method in a wide range of frequency (1 kHz–400 kHz) and voltage (−1 V)–(+6 V) at room temperature. The values of ε′, ε′′, tan δ, M′, M′′ and σac are determined sensitive to the frequency and voltage in depletion and accumulation regions. The values of ε′ and ε′′ decrease with increasing frequency while the values of M′ and σac increase. The peak behavior in the tan δ and M′′ vs. frequency curves was attributed to the dielectric relaxation processes and surface states (Nss). The plots of ln (σac) vs. ln (f) at enough high forward bias voltage (+6 V) have three linear regions with different slopes which correspond to low, intermediate and high frequencies, respectively. The dc conductivity is effective at low frequencies whereas the ac conductivity effective at high frequencies. According to experimental results, the surface/dipole polarizations can occur more easily occur at low frequencies and the majority of Nss between Zn-doped PVA and n-4H-SiC contributes to the deviation of dielectric behavior of this structure.

Volume 234
Pages 505 - 516
DOI 10.1515/zpch-2017-1091
Language English
Journal Zeitschrift für Physikalische Chemie

Full Text