Zeitschrift für Physikalische Chemie | 2019

Adsorption of Dye from Wastewater onto ZnO Nanoparticles-Loaded Zeolite: Kinetic, Thermodynamic and Isotherm Studies

 
 
 

Abstract


Abstract The adsorption process of methylene blue (MB) and its removal from aqueous solution at initial pollutant concentration range of 1–7 ppm was investigated. Zeolite-A (Z) and its ZnO-loaded species (Z/ZnO) were prepared via microwave technique from natural resource and applied for dye removal. The loading of ZnO was governed by the cation exchange property of zeolite, followed by calcination. Experimentally, Z and Z/ZnO were tested using X-ray Diffraction (XRD), Fourier-Transform Infrared (FTIR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and N2 adsorption-desorption. The examined parameters such as concentration of dye, contact time, ZnO dose and solution pH were traversed. Three isothermal models were analyzed. Kinetic studies indicated that, the adsorption of MB matched with pseudo-second order model. The maximum removal efficiency at pH 3, increased from 67.8% for Z to 94.8% for Z/ZnO modified with 3% ZnO loads (Z/ZnO(3%)). Parameters such as ΔH, ΔS, ΔG, S* and Ea were thermodynamically calculated. Langmiur isotherm and pseudo-second order models were the best fitting for the obtained data. The results indicated that, the adsorption of MB dye is spontaneous and endothermic, the removal efficiency is favored by increasing the temperature. ZnO-zeolite has much higher adsorption capacity for eliminating MB dye than that of the un-loaded zeolite.

Volume 234
Pages 255 - 278
DOI 10.1515/zpch-2018-1342
Language English
Journal Zeitschrift für Physikalische Chemie

Full Text