Zeitschrift für Physikalische Chemie | 2019

ZnO/UV/H2O2 Based Advanced Oxidation of Disperse Red Dye

 
 
 
 
 

Abstract


Abstract In view of promising efficiency of advanced oxidation process, ZnO/UV/H2O2 based advanced oxidation process (AOP) was employed for the degradation of Disperse Red-60 (DR-60) in aqueous medium. The process variables such as concentration of catalysts, reaction time, pH, dye initial concentration and H2O2 dose were evaluated for maximum degradation of dye. The maximum degradation of 97% was achieved at optimum conditions of H2O2 (0.9 mL/L), ZnO (0.6 g/L) at pH 9.0 in 60 min irradiation time. The analysis of treated dye solution revealed the complete degradation under the effect of ZnO/UV/H2O2 treatment. The water quality parameters were also studied of treated and un-treated dye solution and up to 79% COD and 60% BOD reductions were achieved when dye was treated with at optimum conditions. The dissolved oxygen increased up to 85.6% after UV/H2O2/ZnO treatment. The toxicity was also monitored using hemolytic and Ames tests and results revealed that toxicity (cytotoxicity and mutagenicity) was also reduced significantly. In view of promising efficiency of UV/H2O2/ZnO system, it could possibly be used for the treatment of wastewater containing toxic dyes.

Volume 234
Pages 129 - 143
DOI 10.1515/zpch-2019-0006
Language English
Journal Zeitschrift für Physikalische Chemie

Full Text