Zeitschrift für Physikalische Chemie | 2019

Effect of Hydrothermal Reaction Time on Electrical, Structural and Magnetic Properties of Cobalt Ferrite

 
 
 
 
 
 
 
 

Abstract


Abstract Cobalt ferrite was synthesized by hydrothermal route in order to investigate the effect of hydrothermal reaction time on structural, magnetic and dielectric properties. The synthesized cobalt ferrite was characterized by X-ray diffraction, Fourier transform infrared and Vibrating-Sample Magnetometer (VMS). XRD data analysis confirmed the formation of cubic inverse spinel ferrite for complete time series as the high intensity peak corresponds to cubic normal spinel structure. The ionic radii, cation distribution among tetrahedral and octahedral sites, lattice parameters, X-ray density, bond lengths were also investigated cobalt ferrite prepared at different hydrothermal reaction time. The crystallite size was found to be in the range of 11.79–32.78 nm. Tolerance factor was near unity that also confirms the formation of cubic ferrites. VSM studies revealed the magnetic nature of cobalt ferrite. The coercivity (1076.3Oe) was observed for a sample treated for 11 h. The squareness ratio was 0.56 that is close to 0.5 which shows uniaxial anisotropy in cobalt ferrite. Frequency dependent dielectric properties i.e. dielectric constant, AC conductivity, tangent loss and AC resistivity are calculated with the help of Impedance Analyzer. Intrinsic cation vibration of cubic spinel ferrites are confirmed from FTIR analysis in the range of 400–4000 cm−1. In view of enhanced properties, this technique could possibly be used for the synthesis of cobalt ferrite for different applications.

Volume 234
Pages 323 - 353
DOI 10.1515/zpch-2019-1423
Language English
Journal Zeitschrift für Physikalische Chemie

Full Text