Journal of Mechanical Engineering and Sciences | 2021

Magnetohydrodynamic peristaltic flow of Bingham fluid in a channel: An application to blood flow

 
 
 
 
 
 
 

Abstract


The paper examined a theoretical investigation of the stimulus of mass and heat transfer on the channel s peristaltic utilization of the MHD Bingham liquid. The research study is motivated to explore blood circulation in the little vessels by taking the slip, variable thermal conductivity, and thickness of the wall features into account.\xa0 The leading constitutive equations are established based on low Reynolds number and approximations for long wavelengths. The solution for the resulting nonlinear energy and momentum equations is obtained using a semi-analytic method, while the exact solution for the concentration field is obtained. Using the MATLAB software, the influences of different constraints on the interest of physiological quantities are represented graphically. One of the considerable outcomes of the current model exposes that the existence of variable fluid properties boosts the rate as well as temperature level areas. The rheological and flow properties of various biological fluids can be derived from this model as a particular case. Moreover, the formation of stuck bolus diminishes for larger values of the magnetic and velocity slip constraints.

Volume 15
Pages 8082-8094
DOI 10.15282/JMES.15.2.2021.12.0637
Language English
Journal Journal of Mechanical Engineering and Sciences

Full Text