Mrs Bulletin | 2019

High-throughput calculations in the context of alloy design

 
 

Abstract


Modern approaches to alloy design increasingly exploit the framework of computational thermodynamics and kinetics to guide the selection of alloy compositions and processing strategies, to achieve desired microstructures, and yield tailored properties. In this context, phase diagrams play a critical role and their assessment can represent a bottleneck in the design of new multicomponent systems. In recent years, it has become possible to accelerate this process through the coupling of the CALculation of PHAse Diagram (CALPHAD) computational thermodynamics framework with high-throughput quantum mechanical calculations. This article reviews recent developments and applications in this area, and discusses future opportunities for high-throughput calculations in the context of modeling kinetics, highlighting the important role of interfacial processes and atomic mobilities.

Volume 44
Pages 252-256
DOI 10.1557/MRS.2019.71
Language English
Journal Mrs Bulletin

Full Text