Mrs Bulletin | 2019

Ovonic threshold switching selectors for three-dimensional stackable phase-change memory

 
 
 

Abstract


High-current switching performance of ovonic threshold switching (OTS) selectors have successfully enabled the commercialization of high-density three-dimensional (3D) stackable phase-change memory in Intel’s 3D Xpoint technology. This bridges the huge performance gap between dynamic random access memory (DRAM) and Flash. Similar to phase-change memory, OTS uses chalcogenide-based materials, but whereas phase-change memory reversibly switches between a high-resistance amorphous phase and a low-resistance crystalline phase, OTS freezes in the amorphous phase. In this article, we review recent developments in OTS materials and their performance in devices, especially current density and selectivity. Advantages and challenges of OTS devices in the integration with the phase-change memory are discussed. We introduce the evolution of theoretical models for explaining the OTS behavior, including thermal runaway, field-induced nucleation, and generation/recombination of charge carriers.

Volume 44
Pages 715-720
DOI 10.1557/mrs.2019.206
Language English
Journal Mrs Bulletin

Full Text