Floresta e Ambiente | 2021

Effects of Chemical Composition and Pyrolysis Process Variables on Biochar Yields: Correlation and Principal Component Analysis

 
 

Abstract


Based on a systematic review, 19 case studies were selected, focusing on the production of biochar through pyrolysis of five lignocellulosic biomasses (olive husk, beech wood, corncob, spruce wood, and hazelnut shell), under constant pressure (0.1 MPa) and temperature from 650.2 to 973.0 K. Interactions between process variables (temperature, residence time of the vapor phase and heating rate), biomass chemical composition variables (lignin, holocellulose, ash, carbon, nitrogen, oxygen and hydrogen content) and biochar yield-CY were evaluated by Pearson’s correlation matrix and Principal Component Analysis-PCA. Strong correlations (|r| ≥0.75, p<0.05) were found for lignin and CY (0.78); carbon and CY (0.76); nitrogen and CY (0.77). Three variables of biomass chemical composition were the most important ones for the first principal component-PC1; process variables (heating rate and the vapour residence time) were the most important ones for the second principal component-PC2. Experiments with hazelnut shell as feedstock were associated with higher CY.

Volume None
Pages None
DOI 10.1590/2179-8087-floram-2021-0007
Language English
Journal Floresta e Ambiente

Full Text