Modern Technologies in Medicine | 2021

Anti-Adhesion Effect of Composite Film Materials Based on Glycoluril-Modified Sodium Carboxymethyl Cellulose

 
 
 
 
 
 
 
 
 
 

Abstract


The aim of the study was to develop composite film materials derived from modified sodium carboxymethyl cellulose and to evaluate their anti-adhesive effects. Materials and Methods. The modified film materials were obtained by dissolving sodium carboxymethyl cellulose (Na-CMC) in an aqueous solution of a modifier (glycoluril) with subsequent homogenization and drying in a vacuum drying oven at room temperature. Physicomechanical parameters of the obtained films were determined using the Instron 3369 universal electromechanical testing machine (Great Britain) equipped with a climatic chamber (300–523 K), improved video extensometer, and the MKC-25 micrometer (Russia). Cytotoxicity of glycoluril-modified film materials derived from Na-CMC was studied by incubating cell cultures of 3T3-L1 mouse fibroblasts directly with extracts from films under study using a colorimetric test. Their anti-adhesion effect was investigated on 40 female Wistar rats by modeling a flat adhesion by inducing abrasion of the cecum and suturing the deserosed surface of the abdominal wall anatomically opposite the abrasion area. The presence of adhesions was assessed on day 8 after the operation. Commercial membrane Seprafilm (USA) was used as a reference sample. Results. It was found that extracts obtained from film materials derived from Na-CMC modified with glycoluril at a concentration of 0.01 and 0.05 wt. % had no cytotoxic effect on the cell culture of mouse fibroblasts 3T3-L1. Flat adhesions were not detected when using Seprafilm. When film materials under study were placed in the abdominal cavity between the injured areas, formation of flat adhesions was not observed or observed in one case out of ten. Conclusion. The obtained films are promising for preventing adhesions as a barrier-type agent. Modifying Na-CMC with glycoluril made it possible to create films that prevent formation of flat adhesions, have improved physical and mechanical properties and no cytotoxic effect.

Volume 13
Pages 35 - 40
DOI 10.17691/stm2021.13.1.04
Language English
Journal Modern Technologies in Medicine

Full Text