Archive | 2021

Assessing Combined Effects for Mixtures of Similar and Dissimilar Acting Neuroactive Substances on Zebrafish Embryo Movement

 
 
 
 
 

Abstract


Risk assessment of chemicals is usually conducted for individual chemicals whereas mixtures of chemical are occurring in the environment. Considering that neuroactive chemicals are a group of contaminants that dominate in the environment, it is then imperative to understand the combined effects from mixtures. The commonly used models to predict mixture effects, namely concentration addition (CA) and independent action (IA), are thought suitable for mixtures of similarly or dissimilarly acting components, respectively. For mixture toxicity prediction, one important challenge is to clarify whether to group neuroactive substances based on similar mechanisms of action, e.g. same molecular target or rather similar toxicological response, e.g. hyperor hypoactivity (effect direction). We addressed this by using the spontaneous tail coiling (STC) of zebrafish embryos, which represents the earliest observable motor activity in the developing neural network, as a model to elucidate the link between mechanism of action and toxicological response. Two questions were asked: 1.) Can the mixture models CA or IA be used to predict combined effects for neuroactive chemical mixtures when the components share a similar mode of action (i.e. hyperor hypoativity) but show different mechanism of action? 2.) Will a mixture of chemicals where the components show opposing effect directions result in an antagonistic combined effect? Results indicate that mixture toxicity of chemicals such as propafenone and abamectin as well as chlorpyrifos and hexaconazole that are known to show different mechanisms of action but similar effect directions were predictable using CA and IA models. This could be interpreted with the convergence of effects on the neural level leading to either a collective activation or inhibition of synapses. We also found antagonistic effects for mixtures containing substances with opposing effect direction. Finally, we discuss how the STC may be used to amend risk assessment.

Volume None
Pages None
DOI 10.20944/PREPRINTS202103.0752.V1
Language English
Journal None

Full Text