Archive | 2021

A Real-Time Circuit Phase Delay Correction System for MEMS Vibratory Gyroscopes

 
 
 
 
 
 
 
 

Abstract


With the development of designing and manufacturing level for micro-electromechanical system (MEMS) gyroscopes, the control circuit system becomes a key point to determine their internal performances. Nevertheless, phase delay of electron components may result in some serious hazards. This paper describes a real-time circuit phase delay correction system for MEMS vibratory gyroscopes. A detailed theoretical analysis is provided to clarify the influences of circuit phase delay on the in-phase and quadrature (IQ) coupling characteristics and zero rate output (ZRO) utilizing force-to-rebalance (FTR) closed-loop detection and quadrature correction system. By deducing the relationship between amplitude-frequency, phase-frequency of MEMS gyroscope and the phase relationship of the whole control loop, a real-time correction system is proposed to automatically adjust the phase reference value of phase-locked loop (PLL) and thus compensate for the real-time circuit phase delay. The experimental results show that the correction system can accurately measure and compensate the circuit phase delay in real time. Furthermore, the unwanted IQ coupling can be eliminated and the ZRO is decreased by 755% to 0.095°/s. This correction system realizes a small angle random walk of 0.978°/√h, and a low bias instability of 9.458°/h together with a scale factor nonlinearity of 255 ppm at room temperature. Besides, the thermal drift of ZRO is reduced to 0.0034°/s/°C at a temperature range from -20°C to 70°C.

Volume None
Pages None
DOI 10.20944/PREPRINTS202104.0346.V1
Language English
Journal None

Full Text