Archive | 2021

Close-range Hyperspectral Spectroscopy Reveals Leaf Water Content Dynamics

 
 
 
 
 
 
 

Abstract


Water plays a crucial role in maintaining plant functionality and drives many ecophysiological processes. The distribution of water resources is in a continuous change due to global warming affecting the productivity of ecosystems around the globe, but there is a lack of non-destructive methods capable of continuous monitoring of plant and leaf water content that would help us in understanding the consequences of the redistribution of water. We studied the utilization of novel small hyperspectral sensors in the 1350-2450 nm spectral range in non-destructive estimation of leaf water content in laboratory and field conditions. We found that the sensors captured up to 96% of the variation in equivalent water thickness (EWT, g/m2) and up to 90% of the variation in relative water content (RWC). These laboratory findings were supported by field measurements, where repeated leaf spectra measurements were in good agreement (R2=0.79) with a time-lagged change of tree xylem diameter. Further tests were done with an indoor plant (Dracaena marginate Lem.) by continuously measuring leaf spectra while drought conditions developed, which revealed detailed diurnal dynamics of leaf water content. We conclude that close-range hyperspectral spectroscopy can provide a novel tool for continuous measurement of leaf water content at the single leaf level and help us to better understand plant responses to varying environmental conditions.

Volume None
Pages None
DOI 10.20944/preprints202108.0497.v1
Language English
Journal None

Full Text