Journal of Petroleum Technology | 2021

Laboratory Formation Damage Test Data Upscaled With Computational Fluid Dynamics

 

Abstract


This article, written by JPT Technology Editor Judy Feder, contains highlights of paper SPE 199268, “Upscaling Laboratory Formation Damage Laboratory Test Data,” by Michael Byrne, SPE, Lesmana Djayapertapa, and Ken Watson, SPE, Lloyd’s Register, et al., prepared for the 2020 SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, 19-21 February. The paper has not been peer reviewed.\n Through several case histories, the complete paper demonstrates applications of computational fluid dynamics (CFD) modeling to upscaling of laboratory-measured formation damage and reveals implications for well and completion design. The value of laboratory testing is quantified and interesting challenges to conventional wisdom are highlighted.\n Introduction\n Laboratory formation damage testing is often used to help select optimal drilling and completion fluids. Test procedures such as sand retention and return permeability represent an attempt to simulate near-wellbore conditions during well construction and production.\n To determine what degree of permeability impairment is allowable, further interpretation that cannot be provided using classical nodal analysis or reservoir simulation methods is required. The complete paper describes the evolution of, and potential for, more-comprehensive upscaling and outlines the importance of consideration of full well geometry when designing and interpreting coreflood tests for formation damage. CFD simulations provide a means to upscale suitable laboratory test data to predict effect on well performance.\n Methods\n CFD simulations use a relatively simple, steady-state, static damage model that takes endpoint data from laboratory core tests and translates the data into parameters that are used for input into well geometry. Although this method has its merits and is a considerable advance on previous, more-simplistic upscaling attempts, it does not necessarily present the full picture of damage evolution in the near-wellbore. A transient model of damage with data again derived from laboratory coreflood data could reveal more about well cleanup and progressive damage removal.\n Steady-State Modeling. No API recommended practice for return permeability testing exists. Laboratories have their own procedures that comply broadly with recommended procedures developed some time ago. Operators and consultants, too, have their own procedures, which they often ask laboratories to follow. Although no recommended practice exists, evaluation of drilling and completion fluids usually involves measurement of a base permeability and remeasurement of a return permeability—or several—after application of the test fluid or fluids. In many cases, the laboratory removes the external mud cake or trims a slice of the end of the plug to measure return permeability without mud cake (Fig. 1).

Volume 73
Pages 63-64
DOI 10.2118/0321-0063-JPT
Language English
Journal Journal of Petroleum Technology

Full Text