Day 4 Thu, October 21, 2021 | 2021

Sharpening a Cyclic Solvent Injection Technique in a Heavy Oil Reservoir from the Variation of the Nitrogen Injected as Dispersing: A Field Pilot, Colombia

 
 
 
 

Abstract


\n This paper analyzes the use of a cyclic solvent injection technique (CSI) as a non-thermal EOR alternative to cyclic steam stimulation (CSS) for increasing the heavy oil recovery in a shallow reservoir located at the middle Magdalena basin in Colombia.\n A pilot well with less than 30% of water-cut and 10.9 °API was selected. Heavy natural gasoline of 30 °API obtained from the same reservoir was injected by using nitrogen (N2) as dispersing gas.\n Three procedures were performed being the procedure A, a Solvent slug injection of 60 bbl through the annular pushed and dispersed by 46,444 m3 (1,640 Mscf) of N2 immiscible (considering the low reservoir pressure). The procedure B consisted of injecting the same Solvent volume, but this time pushed by a third part of the N2 injected previously 15,481 m3 (547 Mscf). The procedure C consisted of only inject the same N2 volume than B procedure to analyze the heavy oil response without Solvent. There were collected production data, °API (by hydrometer), gas-flow and gas-gravity values using a liquid level software. Knowing the °API of each component in the laboratory—Solvent and heavy oil—the Solvent concentration from the real °API produced in production stages was calculated. All procedures had 48 hours of soaking, followed by a flowing process to tank to carefully release the excess of N2 before starting the production stage, avoiding gas lock issues.\n Without considering the Solvent injected, incremental oil production in procedure A was 232 bbl, in procedure B was 120 bbl and for procedure C, incremental oil only reached 11 bbl. With the last result it was determined the N2 injection by itself as a production mechanism without the Solvent effect in the in-situ heavy oil had a negligible effect on incremental oil. The gas-gravity showed the gas composition became heavier along the time, this considering the high-frequency N2 injections swept the methane near the well, requiring more time to produce the N2 traces from the porous media. The excess of N2 as a heavy Solvent dispersing mechanism does not warrant a better dilution effect since as observed in A and B procedures, Solvent concentration in the early production stage never dropped below 35% (17 °API), regardless of the N2 volume injected in the first two days.\n Finally, although A procedure had more incremental oil production (+93% than B), less N2 injected in B procedure was more efficient (+55% than A) regarding the incremental oil and N2 injected ratio (ONR).

Volume None
Pages None
DOI 10.2118/205228-ms
Language English
Journal Day 4 Thu, October 21, 2021

Full Text