Archive | 2021

Multiplex Sequencing of SARS-Cov-2 genome directly from clinical samples using the Ion Personal Genome Machine (PGM)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


\n Various methods have been developed for rapid and high throughput full genome sequencing of SARS-CoV-2. Here, we described a protocol for targeted multiplex full genome sequencing of SARS-CoV-2 genomic RNA directly extracted from human nasopharyngeal swabs using the Ion Personal Genome Machine (PGM). This protocol involves concomitant amplification of 237 gene fragments encompassing the SARS-CoV-2 genome to increase the abundance and yield of viral specific sequencing reads. Five complete and one near-complete genome sequences of SARS-CoV-2 were generated with a single Ion PGM sequencing run. The sequence coverage analysis revealed two amplicons (positions 13751-13965 and 23941-24106), which consistently gave low sequencing read coverage in all isolates except 4Apr20-64-Hu. We analyzed the potential primer binding sites within these low covered regions and noted that the 4Apr20-64-Hu possess C at positions 13730 and 23929, whereas the other isolates possess T at these positions. The genetic variations observed suggest that the naturally occurring genome variations present in the actively circulating SARS-CoV-2 strains affected the performance of the target enrichment panel of the Ion AmpliSeq™ SARS‑CoV‑2 Research Panel. The possible impact of other genetic sequence variations warrants further investigation, and an improved version of the Ion AmpliSeq™ SARS‑CoV‑2 Research Panel, hence, should be considered.

Volume None
Pages None
DOI 10.21203/RS.3.RS-141611/V1
Language English
Journal None

Full Text