Archive | 2021

Circulation pattern control of wet days and dry days in Free State, South Africa

 

Abstract


\n Atmospheric circulation is a vital process in the transport of heat, moisture, and pollutants around the globe. The variability of rainfall depends to some extent on the mechanisms of atmospheric circulation. This paper uses the concept of classifying the recurrent large-scale atmospheric circulation patterns in southern Africa, and the linkage of the classified patterns to wet days and dry days in Free State, South Africa, for the analysis of how the probability of wet and dry events in Free State can be associated with specific synoptic situations, in addition to the underlying dynamics. Principal component analysis was applied to the T-mode matrix (column/variable is time series and row is grid points at which the field was observed) of daily mean sea level pressure field from 1979 to 2018 in classifying the recurrent circulation patterns in southern Africa. 18 circulation types (CTs) were classified in the study region. From the linkage of the CTs to the observed rainfall data, from 11 stations in Free State, it was found that dominant austral winter and late austral autumn CTs have a higher probability of bringing dry days to Free State. Dominant austral summer and late austral spring CTs were found to have a higher probability of bringing wet days to Free State. Cyclonic/anti-cyclonic activity over the southwest Indian Ocean, explained to a good extent, the inter-seasonal variability of rainfall in Free State. The synoptic state associated with a stronger anti-cyclonic circulation at the western branch of the South Indian Ocean high-pressure, during austral summer, leading to enhanced moisture transport by southeast winds was found to have the highest probability to bring above-average rainfall in most regions in Free State; while the synoptic state associated with enhanced transport of cold dry air, from the Benguela current, by the extratropical westerlies was found to be associated with the highest probability of (winter) dryness in Free State.

Volume None
Pages None
DOI 10.21203/RS.3.RS-160597/V1
Language English
Journal None

Full Text