Archive | 2021

Comparison of Airborne Laser Scanning (3D) with Sentinel-2 (2D) for Estimating Above Ground Biomass/Carbon Stock in a Subtropical Chir Pine Forest of Balakot, Pakistan

 
 
 
 
 

Abstract


\n Forest ecosystems act as a sink of atmospheric carbon dioxide in the form of biomass, and plays one of the crucial role for carbon sequestration and in regulating the global carbon cycle. Few studies based on ground sample plots were conducted for estimating forest biomass/carbon stock across Pakistan. This study comparing the first time the potential of three dimensional (3D) airborne laser scanning (ALS) with two dimensional (2D) Sentinel-2 to estimate above-ground biomass/carbon stock (AGB/C) in a Subtropical Chir Pine forest of Balakot, Pakistan. We derived height and density metrics from the ALS canopy height model (CHM), and different metrics from Sentinel-2 images, and were regressed with field measured AGB/C at sample plots locations. We found R2 = 0.86 with RMSE% = 25.70, and R2 = 0.62 with RMSE% = 43.92 for ALS and for Sentinel-2 respectively with ground measured AGB/C at sample plots locations. Our study demonstrated that 3D ALS technology has greater potential and is the most accurate option as compared to 2D Sentinel-2 for regular planning and monitoring of AGB/C in the context of the national forest inventory of Pakistan. Our study will be useful for the accomplishment of the REDD+ in measuring, reporting, and verification of forest resources, and future sustainable utilization of forest, safeguarding the livelihoods of forest-dependent people, and reducing pressure on forest ecosystems.

Volume None
Pages None
DOI 10.21203/RS.3.RS-173795/V1
Language English
Journal None

Full Text