Archive | 2021

Electrochemical Sensitive Detection of Hydrazine Through Cobalt Doped Cerium Oxide Nanostructured Platform

 
 

Abstract


\n Chemically synthesized cobalt-doped cerium oxide nanoparticles(CeO2:Co;NPs) were successfully prepared by complexed based co-precipitation process. The structural, morphological, chemical composition, optical properties, and electro-catalytic properties were determined by X-ray diffraction pattern(XRD), transmission electron microscopy(TEM), energy dispersive x-ray analysis (EDX), UV/Visible absorption spectroscopy, and cyclic voltammetry techniques. Owing to the wide-spread applications of CeO2 NPs in various fields of applied material sciences, transition metal ions doped CeO2:Co NPs exhibited excellent electro-catalytic properties. Outstanding physiochemical properties of CeO2 such as reversible oxidation states, high ionic mobility, large oxygen storage ability, effective large specific surface area, and the excellent current response observed in the electrocatalytic oxidation of hydrazine. The presence of transition metal ions (cobalt) improves the oxidation potential of hydrazine. Cyclic voltammetry was analog with the electrochemical impedance spectroscopy results, which revealed the enhanced with rapid sensing response against hydrazine. The electro-catalytic results of the CeO2:Co NPs electrode exhibited excellent voltammetry and impedance spectroscopy performance towards the hydrazine oxidation. The fabricated chemical sensor shows a wide linear detection range from 7.18 to 1000 µM, a low detection limit 7.2 µM, and sensitivity of 2.42 µAmLµM-1cm-2. The fabricated sensing electrode demonstrated long-term steadiness resulting it shows high sensitivity, selectivity, repeatability/reproducibility, and rapid detection of hydrazine.

Volume None
Pages None
DOI 10.21203/RS.3.RS-192694/V1
Language English
Journal None

Full Text