Archive | 2021

Atiprimod Triggered Apoptotic Cell Death via Acting on PERK/eIF2a/ATF4/CHOP and STAT3/NF-KB axis in MDA-MB-231 and MDA-MB-468 Breast Cancer Cells

 
 
 
 
 

Abstract


\n Purpose: The constitutive activation of STAT3 through receptor tyrosine kinases triggered breast cancer cell growth, and invasion-metastasis. Atiprimod impacts anti-proliferative, anti-carcinogenic effects in hepatocellular carcinoma, lymphoma, multiple myeloma via hindering the biological activity of STAT3. Dose-dependent atiprimod evokes first autophagy as a survival mechanism and then apoptosis due to prolonged ER stress in pituitary adenoma cells. The therapeutic efficiency and mechanistic action of atiprimod in breast cancer cells have not been investigated yet. Thus, we aimed to modulate the pivotal role of ER stress in atiprimod-triggered apoptosis in MDA-MB-231 and MDA-MB-468 breast cancer cells. Results: Dose- and time-dependent atiprimod treatment inhibits cell viability and colony formation in MDA-MB-468 and MDA-MB-231 breast cancer cells. A moderate dose of atiprimod (2 mM) inhibited STAT3 phosphorylation at Tyr705 residue and also suppressed the total expression level of p65. In addition, nuclear localization of STAT1, 3 and NF-kB was prevented by atiprimod exposure in MDA-MB-231 and MDA-MB-468 cells. Atiprimod evokes PERK, BiP, ATF-4, CHOP upregulation, and PERK (Thr980), eIF2a (Ser51) phosphorylation’s. However, atiprimod suppressed IRE1a-mediated Atg-3, 5, 7, 12 protein expressions and no alteration were observed on Beclin-1, p62 expression levels. PERK/eIF2a/ATF4/CHOP axis pivotal role in atiprimod-mediated G1/S arrest and apoptosis via Bak, Bax, Bim and PUMA upregulation in MDA-MB-468 cells. Moreover, atiprimod renders MDA-MB-231 more vulnerable to type I programmed cell death by plasmid-mediated increased STAT3 expression. Conclusion: Atiprimod induced prolonged ER stress-mediated apoptosis via both activating PERK/eIF2a/ATF4/CHOP axis and suppressing STAT3/NF-kB transcription factors nuclear migration in TBNC cells.

Volume None
Pages None
DOI 10.21203/RS.3.RS-273844/V1
Language English
Journal None

Full Text