Archive | 2021

Priming Effect of Thiamine on the Enhancement of Induced Resistance to the Plant Disease Phytophthora Nicotianae in Tobacco

 
 
 
 
 
 
 

Abstract


\n Induced resistance by elicitors is considered to be an eco-friendly strategy to stimulate plant defense against pathogen attack. Thiamine (vitamin B1,VB1) can act as a plant defence trigger, or priming agent, leading to a rapid counterattack on pathogen invasion.To date, the mechanisms by which VB1 provides protection against plant disease have yet to be fully elucidated, expecially no reports about VB1 treatment influenced the development of Phytophthora nicotianae in plant. Tobacco black shank (TBS) caused by P. nicotianae is destructive to almost all tobacco cultivars and is widespread in many tobacco-growing countries. In the present study, the priming effect of VB1 on tobacco against the disease P. nicotianae and its biochemical and molecular impact on plant defense mechanisms were evaluated. Base on the effect of VB1 on mycelial growth and zoospore formation, the appropriate VB1 treatment was used in protecting tobacco against P. nicotianae. For VB1 pretreatment, tobacco exhibited a significant reduction in disease severity. Consistent with the occurrence of induced resistance, the pronounced increase in H2O2 level, phenylalanine ammonia lyase (PAL) and peroxidase (POD) activities were observed. For defense reactions, VB1 promoted the increases of H2O2, SA and lignin contents. Moreover, the expressions of PR1, PR5, NPR1, PAL, CM1, H1N1 and EFE26 were induced by VB1, which also involved in defense reactions. Our findings indicate that the priming effect of VB1 may partially depend on the production of the callose deposition, H2O2 accumulation, and hormone SA production.

Volume None
Pages None
DOI 10.21203/RS.3.RS-279029/V1
Language English
Journal None

Full Text