Archive | 2021

Insights Into Heat Response Mechanisms in Clematis Species: Physiological Analysis, Expression Profiles and Function Verification

 
 
 
 
 
 
 
 
 
 
 
 

Abstract


\n Clematis species are commonly grown in western and Japanese gardens. Heat stress can inhibit many physiological processes mediating plant growth and development. The mechanism regulating responses to heat has been well characterized in Arabidopsis thaliana and some crops, but not in horticultural plants, including Clematis species. In this study, we found that Clematis alpina ‘Stolwijk Gold’ was heat-sensitive whereas Clematis vitalba and Clematis viticella ‘Polish Spirit’ were heat-tolerant based on the physiological analyses in heat stress. Transcriptomic profiling identified a set of heat tolerance-related genes (HTGs). Consistent with the observed phenotype in heat stress, 41.43% of the differentially expressed HTGs between heat treatment and control were down-regulated in heat-sensitive cultivar Stolwijk Gold, but only 9.80% and 20.79% of the differentially expressed HTGs in heat resistant C. vitalba and Polish Spirit, respectively. Co-expression network, protein–protein interaction network and phylogenetic analysis revealed that the genes encoding heat shock transcription factors (HSFs) and heat shock proteins (HSPs) played an essential role in Clematis resistance to heat stress. Ultimately, we proposed that two clades of HSFs may have diverse functions in regulating heat resistance from C. vitalba and CvHSFA2-2 could endow different host with high temperature resistance. This study provides first insights into the diversity of the heat response mechanisms among Clematis species.

Volume None
Pages None
DOI 10.21203/RS.3.RS-338667/V1
Language English
Journal None

Full Text