Archive | 2021

Amyloid β protein negatively regulates the human platelet activation induced by thrombin receptor-activating protein

 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


\n Background: Amyloid β protein (Aβ) is the main product derived from amyloid precursor protein (APP) by sequential enzymatic actions. Deposition of Aβ in the brain parenchyma or cerebral vessels is a primary morphological feature of Alzheimer’s disease (AD). In addition, abnormal accumulation of Aβ in the cerebral vessels is known as cerebral amyloid angiopathy (CAA), which is considered a risk factor for intracerebral hemorrhage, particularly in the elderly. CAA reportedly contributes to the development of vascular cognitive decline in addition to AD. On the other hand, human platelets are recognized as the principal components affecting the onset and progression of AD. Although there are several studies showing that Aβ directly modulates human platelet functions, the exact mechanism underlying the Aβ effects on human platelets remains to be elucidated.Methods: The present study investigated the effects of Aβ on human platelet activation using a platelet aggregometer with laser scattering, followed by western blot analysis and ELISA.Results: Aβ at doses up to 7 µM alone failed to affect platelet aggregation or platelet-derived growth factor (PDGF)-AB secretion. On the other hand, Aβ decreased the platelet aggregation induced by thrombin receptor-activating protein (TRAP), but not collagen or ADP. Aβ also suppressed platelet aggregation induced by SCP0237, a selective protease-activated receptor (PAR)-1 agonist, and A3227, a selective PAR-4 agonist. The PDGF-AB secretion and the phosphorylated-heat shock protein (HSP)27 release by TRAP were inhibited by Aβ. In addition, the TRAP-induced phosphorylation of JNK and the phosphorylation of p38 MAP kinase followed by phosphorylation of HSP27 were reduced by Aβ.Conclusion: The results of the present study strongly suggest that Aβ negatively regulates PAR-elicited human platelet activation. These findings may indicate one of the causes of intracerebral hemorrhage due to CAA.

Volume None
Pages None
DOI 10.21203/RS.3.RS-391777/V1
Language English
Journal None

Full Text