Archive | 2021

Optimization of Osteosynthesis Positioning in Mandibular Body Fracture Management using Numerical Finite Element Method Simulation and Polymeric Model Testing

 
 
 
 

Abstract


\n The study aims to optimise surgical management for mandibular body fractures by application of finite element method (FEM) with verification from polymeric model tests. The study investigates two issues regarding the application of osteosynthesis plates for mandibular body fractures: the effect of miniplate positioning and mandibular body height decrease. Computed tomography (CT) images of cadaveric mandibles with heights of resp. 21, 15, and 10 mm were used to create a FEM-model with a unilateral straight-line fracture, fixated with a standard commercially available 6-hole 2 mm titanium miniplate. Outcomes were compared with a series of mechanical tests with polymeric models fixed in a customized device and loaded with a mechanical test bench. Firstly, the study illustrates that the optimal plate position appears to be the upper border. Secondly, lower mandibular height increases instability and requires a stronger fixation. Thirdly, optimal fracture reduction is essential for gaining stability. In conclusion, FEM and polymeric testing outcomes of unilateral non-comminuted fractures were highly comparable to the current opinions in mandibular fracture treatment. In future, the FEM may be used to predict the treatment of more complex fractures. However, more analysis needs to be conducted to say whether FEM alone is sufficient for fracture analysis.

Volume None
Pages None
DOI 10.21203/RS.3.RS-449446/V1
Language English
Journal None

Full Text