Archive | 2021

Identification of Significant Genes And Pathways In ARDS Via Bioinformatical Analysis

 
 

Abstract


\n Background and Aims: Acute respiratory distress syndrome (ARDS) is one of the most common acute thoracopathy with complicated pathogenesis in ICU. The study is to explore the differentially expressed genes (DEGs) in the lung tissue and underlying altering mechanisms in ARDS.Methods: Gene expression profiles of GSE2411 and GSE130936 were available from GEO database, both of them included in GPL 339. Then, an integrated analysis of these genes was performed, including gene ontology (GO) and KEGG pathway enrichment analysis, protein-protein interaction (PPI) network construction, Transcription Factors (TFs) forecasting, and their expression in varied organs.Results: A total of 39 differential expressed genes were screened from the datasets, including 39 up-regulated genes and 0 down-regulated genes. The up-regulated genes were mainly enriched in the biological process, such as immune system process, innate immune response, inflammatory response, cellular response to interferon-beta and also involved in some signal pathways, including cytokine-cytokine receptor interaction, salmonella infection, legionellosis, chemokine, and Toll-like receptor signal pathway. GBP2, IFIT2 and IFIT3 were identified as hub genes in the lung by PPI network analysis with MCODE plug-in, as well as GO and KEGG re-enrichment. All of the three hub genes were regulated by the predictive common TFs, including STAT1, E2F1, IRF1, IRF2, and IRF9. Conclusions: This study implied that hub gene GBP2, IFIT2 and IFIT3, which might be regulated by STAT1, E2F1, IRF1, IRF2, or IRF9, played significant roles in ARDS. They could be potential diagnostic or therapeutic targets for ARDS patients.

Volume None
Pages None
DOI 10.21203/RS.3.RS-457902/V1
Language English
Journal None

Full Text