arXiv: Mesoscale and Nanoscale Physics | 2021

Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice

 
 
 
 
 
 
 
 

Abstract


\n Strongly-interacting artificial spin systems are moving beyond mimicking naturally-occurring materials to find roles as versatile functional platforms, from reconfigurable magnonics to designer magnetic metamaterials. Typically artificial spin systems comprise nanomagnets with a single magnetisation texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we achieve macrospin/vortex bistability and demonstrate a four-state metamaterial spin-system ‘Artificial Spin-Vortex Ice’ (ASVI). ASVI is capable of adopting Ising-like macrospins with strong ice-like vertex interactions, in addition to weakly-coupled vortices with low stray dipolar-field. The enhanced bi-texture microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex training and history-dependent nonlinear training dynamics. We observe vortex-domain formation alongside MFM tip vortex-writing. Tip-written vortices dramatically alter local reversal and memory dynamics. Vortices and macrospins exhibit starkly-differing spin-wave spectra with analogue-style mode-amplitude control via vortex training and mode-frequency shifts of ∆f = 3.8 GHz. We leverage spin-wave ‘spectral fingerprinting’ for rapid, scaleable readout of vortex and macrospin populations over complex training-protocols with applicability for functional magnonics and physical memory.

Volume None
Pages None
DOI 10.21203/RS.3.RS-736619/V1
Language English
Journal arXiv: Mesoscale and Nanoscale Physics

Full Text