Archive | 2021

Observational constraints reduce estimates of the global mean climate relevance of black carbon

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


\n How emissions of black carbon (BC) aerosols affect the climate is still uncertain, due to incomplete knowledge of its sources, optical properties and atmospheric processes such as transport, removal and impact on clouds. Here we constrain simulations from four climate models with observations of atmospheric BC concentrations and absorption efficiency, and the most recent emission inventories, to show that the current global mean surface temperature change from anthropogenic BC emissions is likely to be weak at +0.03 ±0.02K. Atmospheric rapid adjustment processes are found to reduce the top of atmosphere radiative imbalance relative to instantaneous radiative forcing (direct aerosol effect) by almost 50% as a multi-model mean. Furthermore, constraining the models to reproduce observational estimates of the atmospheric vertical profile reduces BC effective radiative forcing to 0.08 W m-2, a value more than 50% lower than in unconstrained simulations. Our results imply a need to revisit commonly used climate metrics such as the global warming potential of BC. This value (for a 100-year time horizon) reduces from 680 when neglecting rapid adjustments and using an unconstrained BC profile to our best estimate of 160 ±120.

Volume None
Pages None
DOI 10.21203/rs.3.rs-691895/v1
Language English
Journal None

Full Text