Archive | 2021

MNB1 gene is involved in regulating the iron-deficiency stress response in Arabidopsis thaliana

 
 
 
 
 
 
 
 
 

Abstract


\n Abstract Iron (Fe) is an indispensable mineral element for normal growth of plants. Fe deficiency induces a complex series of responses in plants, involving physiological and developmental changes, to increase Fe uptake from soil. However, the molecular mechanism involved in plant Fe-deficiency is not well understood. Here, we found that the MNB1 gene is involved in modulating Fe-deficiency response in Arabidopsis thaliana . The expression of MNB1 was inhabited by Fe-deficiency stress. Knockout of MNB1 led to enhanced Fe accumulation and tolerance, whereas the MNB1-overexpressing plants were sensitive to Fe-deficiency stress. Lower H 2 O 2 concentrations in mnb1 mutant plants were examined under Fe deficiency circumstances compared to wild-type. On the contray, higher H 2 O 2 concentrations were found in MNB1-overexpressing plants, which was adversely linked with malondialdehyde (MDA) concentrations. Furthermore, in mnb1 mutants, the transcription level of the Fe-uptake and translocation genes, FIT , IRT1 , FRO2 , Z IF , FRD3 , NAS4 , PYE and MYB72 , were considerably elevated during Fe-deficiency stress, resulting in higher Fe accumulation. Together, our findings show that the MNB1 gene negatively controls the Fe-deficiency response in Arabidopsis via modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling pathway, thereby affecting the expression of Fe-uptake and translocation genes.

Volume None
Pages None
DOI 10.21203/rs.3.rs-833563/v1
Language English
Journal None

Full Text