Archive | 2021

Fermi surface instabilities in electronic Raman scattering of the metallic kagome lattice CsV3Sb5

 
 
 
 
 
 
 
 

Abstract


\n Understanding the link between a charge density wave (CDW) instability and superconductivity is a central theme of the 2D metallic kagome compounds AV3Sb5 (A=K, Rb, and Cs). Using polarization-resolved electronic Raman spectroscopy, we shed light on Fermi surface fluctuations and electronic instabilities. We observe a quasielastic peak (QEP) whose spectral weight is progressively enhanced towards the superconducting transition. The QEP temperature-dependence reveals a steep increase in coherent in-plane charge correlations within the charge-density phase. In contrast, out-of-plane charge fluctuations remain strongly incoherent across the investigated temperature range. In-plane phonon anomalies appear at T* ≈ 50 K in addition to right below TCDW ≈ 95 K, while showing no apparent evidence of reduced symmetry at low temperatures. In conjunction with the consecutive phonon anomalies within the CDW state, our electronic Raman data unveil additional electronic instabilities that persist down to the superconducting phase, thereby offering a superconducting mechanism.

Volume None
Pages None
DOI 10.21203/rs.3.rs-846651/v1
Language English
Journal None

Full Text