MatSciRN: Process & Device Modeling (Topic) | 2021

Analysis of the Effect of Slab Thickness on Crack Width in Rigid Pavement Slabs

 
 

Abstract


Cracks that occur in rigid pavements include longitudinal cracks, transverse cracks, and corner cracks. The relatively large crack width not only spoils the aesthetics of the concrete structural elements but can also lead to structural failure. This study aims to determine the crack width of a rigid pavement concrete slab located above the subgrade which is considered a beam on an elastic foundation, so that a minimum rigid pavement concrete slab thickness can be recommended. The specimen will be observed at various thicknesses to obtain the optimum thickness. The load used is a centralized monotonous load, which represents the load of the truck vehicle. The research limitation is using a test object in the form of a concrete plate measuring 2000x600 mm which is placed on the ground with CBR=6 %. The quality of reinforced concrete slabs is fc =40 MPa and fy=440.31 MPa. The thickness of the concrete slab varies between 100 mm, 150 mm, and 200 mm. The slab placed on the ground is then given a central loading in the form of a centralized monotonic load. The loading range starts from a load of 2–180 kN with a load interval of 2 kN. The experimental results show that the rigid pavement slab has a bending failure so that the crack pattern that occurs begins with the first crack on the underside of the slab. The crack pattern in terms of slab thickness variation has a similar pattern. The initial crack width on the slab is 0.04 mm. The thicker the slab smaller the crack width at the same load. Based on the maximum allowable crack width=0.3 mm. For loads between (80–100) kN (Road Class I, II, and III), a minimum thickness of rigid pavement slabs (70–80) mm is recommended. For loads between (130–140) kN, the minimum thickness of the rigid pavement slab (105–115) mm is recommended

Volume None
Pages None
DOI 10.21303/2461-4262.2021.001693
Language English
Journal MatSciRN: Process & Device Modeling (Topic)

Full Text