Journal of Inflammation Research | 2021

A Novel Modified-Curcumin Promotes Resolvin-Like Activity and Reduces Bone Loss in Diabetes-Induced Experimental Periodontitis

 
 
 
 
 
 
 
 
 

Abstract


Purpose Clinically, it is challenging to manage diabetic patients with periodontitis. Biochemically, both involve a wide range of inflammatory/collagenolytic conditions which exacerbate each other in a “bi-directional manner.” However, standard treatments for this type of periodontitis rely on reducing the bacterial burden and less on controlling hyper-inflammation/excessive-collagenolysis. Thus, there is a crucial need for new therapeutic strategies to modulate this excessive host response and to promote enhanced resolution of inflammation. The aim of the current study is to evaluate the impact of a novel chemically-modified curcumin 2.24 (CMC2.24) on host inflammatory response in diabetic rats. Methods Type I diabetes was induced by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC2.24, or the vehicle-alone, was administered by oral gavage daily for 3 weeks to the diabetics. Micro-CT was used to analyze morphometric changes and quantify bone loss. MMPs were analyzed by gelatin zymography. Cell function was examined by cell migration assay, and cytokines and resolvins were measured by ELISA. Results In this severe inflammatory disease model, administration of the pleiotropic CMC2.24 was found to normalize the excessive accumulation and impaired chemotactic activity of macrophages in peritoneal exudates, significantly decrease MMP-9 and pro-inflammatory cytokines to near normal levels, and markedly increase resolvin D1 (RvD1) levels in the thioglycolate-elicited peritoneal exudates (tPE). Similar effects on MMPs and RvD1 were observed in the non-elicited resident peritoneal washes (rPW). Regarding clinical relevance, CMC2.24 significantly inhibited the loss of alveolar bone height, volume and mineral density (ie, diabetes-induced periodontitis and osteoporosis). Conclusion In conclusion, treating hyperglycemic diabetic rats with CMC2.24 (a tri-ketonic phenylaminocarbonyl curcumin) promotes the resolution of local and systemic inflammation, reduces bone loss, in addition to suppressing collagenolytic MMPs and pro-inflammatory cytokines, suggesting a novel therapeutic strategy for treating periodontitis complicated by other chronic diseases.

Volume 14
Pages 5337 - 5347
DOI 10.2147/JIR.S330157
Language English
Journal Journal of Inflammation Research

Full Text