Archive | 2021

Radon survey in kindergartens and schools of Dushanbe, Republic of Tajikistan

 
 
 
 
 
 

Abstract


The paper presents results of the radon survey carried out in preschool and school institutions in Dushanbe, Republic of Tajikistan. Radon concentration was measured using solid state nuclear track detectors Radtrak2. Track detectors were exposed for 3 months during the heating and warm seasons of the year in the same premises. In total, the measurements were performed in 200 premises of 14 kindergartens and 36 schools. The radon equilibrium equivalent concentration during the heating and warm seasons and the annual average radon equilibrium equivalent concentration were calculated. Annual average radon equilibrium equivalent concentration in surveyed buildings ranged from 42 to 331 Bq/m3 with the mean value of 98 Bq/m3 on the first floor and 56 Bq/m3 on the second floor. It was shown that both seasonal values and annual average value of radon equilibrium equivalent concentration in the premises on the second floor are lower than in the premises on the first floor. The annual average effective dose to children from exposure to radon and its progeny in the premises of schools and kindergartens in Dushanbe ranged from 0,64 to 1,64 mSv. The limit value of annual average radon equilibrium equivalent concentration in dwellings and public buildings is set to 100 Bq/m3 for newly built buildings and 200 Bq/m3 for existing buildings in the Radiation safety norms (NRB-06) of the Republic of Tajikistan. This limit was exceeded only on the first floors in one kindergarten during the heating season, in three schools during the warm season and in eight schools during the heating season. When comparing the results of measurements of radon equilibrium equivalent concentration with data on the geological structure of underlying rocks at the locations of the surveyed buildings, no regularity was found. Additional detailed measurements in the buildings, including basements, will help to identify the source of radon entry into the indoor air and to develop recommendations for implementing radon remediation actions separately for each building. The survey results were also used to develop a radon map of Dushanbe.

Volume 14
Pages 124-132
DOI 10.21514/1998-426X-2021-14-1-124-132
Language English
Journal None

Full Text