Water Practice & Technology | 2019

Removal of water hardness using zeolite synthesized from Ethiopian kaolin by hydrothermal method

 
 

Abstract


The use of low cost materials in zeolite synthesis becomes an area of important interest in water softening. This research is aimed to utilize kaolin for zeolite synthesis with hydrothermal method. Mechanical, thermal chemical treatments of raw kaolin were used for zeolite synthesis. Fourier Transform Infrared Spectrometry (FTIR), AAS, XRD, surface area (BET), differential scanning calorimetry and TGA were used to characterize kaolin and zeolite and UV–VIS/spectrometer were used for adsorption capacity of ion exchange. Effect of contact time, pH solution and temperature of the solution were studied for batch experiments. XRD values indicated that the prepared material is showed as fully crystalline and primarily amorphous. Before and after hardness removal sample transmittance percentage intensity showed a wide range of difference. From this study, it can be deduced that Zeolite can be used as a low cost water softening agent. At room temperature, the residue is well with calcium and badly with magnesium, whereas affinity toward Mg ions increases to acceptable levels at 60 °C. The cation exchange capacity of zeolite was found to be dependent on contact time. The batch experiments of removing Ca2þ and Mg2þ show that the adsorption capacity of zeolite in calcium ion is higher affinity than magnesium ion.

Volume 14
Pages 145-159
DOI 10.2166/WPT.2018.116
Language English
Journal Water Practice & Technology

Full Text