Letters in Drug Design & Discovery | 2021

Design, synthesis and in silico studies of novel N-(2-aminophenyl)-2,3-diphenylquinoxaline-6-sulfonamide derivatives targeting receptor-binding domain (RBD) of SARS-CoV-2 Spike Glycoprotein and evaluation as antimicrobial and antimalarial agents

 
 
 
 

Abstract


\n\nPneumonia induced by a novel coronavirus (SARS-CoV-2) was named as coronavirus disease 2019 (COVID-19). The Receptor-binding domain (RBD) of SARS-CoV-2 Spike Glycoprotein, causes invasion of the virus into the host cell by attaching with human angiotensin-converting enzyme-2 (hACE-2) which leads to further infection. \n\n\n\nThe novel N-(2-aminophenyl)-2,3-diphenylquinoxaline-6-sulfonamide derivatives were designed and synthesized to inhibit the RBD of SARS-CoV-2 Spike Glycoprotein by applying molecular docking tools. \n\n\n\nThe synthesized products was characterized by Infrared Spectroscopy (IR), and 1H Nuclear Magnetic Resonance (NMR). \n\n\n\nAll the derivatives were found to have a very good binding affinity between -9 to -10.1 kcal/mol, better than the drugs which are under investigation for the treatment of SARS-CoV-2 infection. Compound F1 has formed 4 hydrogen bonds whereas, F4 and F10 formed two hydrogen bonds each with RBD of SARS-CoV-2 Spike Glycoprotein. All the derivatives were subjected to antimicrobial, antifungal, and antimalarial susceptibility. \n\n\n\n From the above-obtained results, we have concluded that novel N-(2-aminophenyl)-2,3-diphenylquinoxaline-6-sulfonamide derivatives have excellent potential to inhibit the receptor-binding domain (RBD) of SARS-CoV-2 Spike Glycoprotein, which is now an attentive target in designing SARS-CoV-2 inhibitors. This scaffold can hold an effective interest in the development of inhibitors for SARS-CoV-2 in the future if drug repurposing fails to serve the purpose.\n

Volume 18
Pages 1-1
DOI 10.2174/1570180818666210427095203
Language English
Journal Letters in Drug Design & Discovery

Full Text