Journal of Environmental Science and Technology | 2021

Study of the design principles of residential buildings in a moderate and humid climate with a natural ventilation approach (Case study: Analysis of simulated openings of a residential building in Amol city)

 
 
 

Abstract


Background and Objective: Inattention to the climatic features of different regions and the absence of sufficient knowledge of the design principles for optimal use of the potentials of the natural environment leads to higher costs and waste of energy in various fields. Accordingly, due to high humidity in Amol and high cost of ventilation and reduction of moisture in summer, the main objective of this research is to examine and analyze the simulated openings of a residential building with a natural ventilation approach. \nMethod: the present study was carried out in the first step by reviewing the subject literature on this issue and identifying the concepts and principles of residential building design in the field of energy. Then, by supplying the climate information file of Amol from the Weather Meteorology Center for the Climate Consultant software, Design elements were presented. Subsequently, the components were analyzed by Expert Choice software based on the AHP method and computation of component weight led to the final decision in choosing the most important component. Finally, with the simulation of the building in the Flow Design software, the impact of natural ventilation on residential slopes was investigated. \nFindings: seven components were extracted from the above software as principles of the design and tables of climate interpretation. In the following, with the hierarchical analysis method (AHP), a natural ventilation component with a weight of 0.399 was found to be the main component of the static solar power system. \nDiscussion and conclusion: A natural ventilation pattern was designed in a building with a sloping roof and specific dimensions in the Amol climate. By changing the layout of two 1-square-meter openings on two walls with a height of 2.7 meters in opposite directions at two heights of 1 and 1.7 meters from the floor of the building, 4 airflow modes were simulated with regard to the wind speed of the area in the Flow Design software. In this simulation, by placing the wind tunnel perpendicular to two walls, it can be stated that the best natural ventilation efficiency from these four conditions, is the one with two under-roof structures at 1.7-meter height with the highest wind-suction coefficient of 1.19, which will make a reasonable ventilation and air flow in the simulated residential building.

Volume 22
Pages 133-146
DOI 10.22034/JEST.2021.40167.4482
Language English
Journal Journal of Environmental Science and Technology

Full Text