Journal of Solid Mechanics | 2021

Photothermoelastic Investigation of Semiconductor Material Due to Distributed Loads

 
 

Abstract


A dynamic mathematical model of photothermoelastic (semiconductor) medium is developed to analyze the deformation due to inclined loads. The governing equations for photothermoelastic with dual phase lag model are framed for two dimensional case and are further simplified by using potential function. Appropriate transforms w.r.t time (Laplace) and w.r.t space variables (Fourier) are employed on the resulting equations which convert the system of equations into differential equation. The problem is examined by deploying suitable mechanical boundary conditions. Specific types of distributed loads as uniformly distributed force and Linearly distributed force are taken to examine the utility of the model. The analytic expressions like displacements, stresses, temperature distribution and carrier density are obtained in the new domain (transformed).To recover the quantities in the physical domain, numerical inversion technique is employed. Numerical computed results with different angle of inclination vs distance are analyzed with and without dual phase lag theories of thermoelasticity in the form of visual representations. It is seen that physical field quantities are sensitive towards photothermoelastic and phase lag parameters.

Volume 13
Pages 202-212
DOI 10.22034/JSM.2020.1907462.1639
Language English
Journal Journal of Solid Mechanics

Full Text