International Journal for Research in Applied Science and Engineering Technology | 2021

Performance Evaluation of Single-Phase On-Board Charger with Advanced Controller

 

Abstract


Abstract: The increasing mobility of electric vehicles has inspired vehicle growth to power grid technology. Such as vehicle to grid technology allows to transfer the power from the electric vehicle battery to the power grid. This enable speak load shaving, load leveling, voltage regulation, and improved stability of the power system. To develop the vehicle to grid technology requires a specialized EV battery charger, which permits the bi-directional energy transfer between the power grid and the electric vehicle battery. There is a specific control strategy used for a bi-directional battery charger. The proposed control strategy is used for charge and discharge battery of EV. The charger strategy has two parts: 1) Bidirectional AC-DC Converter in two-way Communication System. 2) Bidirectional DC-DC Buck-Boost Converter. There are two modes of operation for a bidirectional ac-dc converter: for G2V, rectifying mode is used, and for V2G, inverter mode is used. The suggested charge strategy not only allows for two-directional power flow but also provides power quality management of the power grid. Fuzzy logic controller (FLC) transforms linguistic control topology evaluations knowledge into an automated control topology using FLC. The FLC is more stable, has less overshoot, and responds quickly. The operation of a standard PI controller and a FLC was compared in this study using MATLAB and Simulink, and different time domain characteristics were compared as toshow that the FLC had a smaller overshoot and a faster response than the PI controller. Keywords: Bi-directional AC-DC converter, bi-directional DC-DC Buck-Boost converter, electric vehicles (EVs), on-board battery charger (OBC), grid to vehicle (G2V), vehicle to grid (V2G).

Volume None
Pages None
DOI 10.22214/ijraset.2021.37556
Language English
Journal International Journal for Research in Applied Science and Engineering Technology

Full Text