Archive | 2021

Epistatic interaction of PDE4DIP and DES mutations in familial atrial fibrillation with slow conduction

 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Background: The genetic causes of atrial fibrillation (AF) with slow conduction are unknown. Methods: Eight kindreds with familial AF and slow conduction, including a family affected by early onset AF, heart block and incompletely penetrant non-ischemic cardiomyopathy (NICM) underwent whole exome sequencing. Results: A known pathogenic mutation in the desmin (DES) gene resulting in S13F substitution at a PKC phosphorylation site was identified in all four members of the kindred with early-onset AF and heart block, while only two developed NICM. Higher penetrance of the mutation for AF and heart block prompted the screening for DES modifier(s). A second deleterious mutation in the phosphodiesterase 4D interacting-protein (PDE4DIP) gene resulting in A123T substitution segregated with early onset AF, heart block and the DES mutation. Three additional novel deleterious PDE4DIP mutations were identified in four other unrelated kindreds. Characterization of PDE4DIPA123T in vitro suggested impaired compartmentalization of PKA and PDE4D characterized by reduced colocalization with PDE4D, increased cAMP activation leading to higher PKA phosphorylation of the β2-adrenergic-receptor, and decreased PKA phosphorylation of Desmin in response to isoproterenol stimulation compared to wildtype PDE4DIP. Conclusion: Our findings identify an epistatic interaction between DES and PDE4DIP variants, increasing the penetrance for conduction disease and arrhythmia.

Volume None
Pages None
DOI 10.22541/AU.161109884.43570882/V1
Language English
Journal None

Full Text