Archive | 2021

Input Admittance Modeling and Passivity-Based Stabilization of Digitally Current-Controlled Grid-Connected Converters

 

Abstract


Due to the ever increasing number of renewable energy systems in the electrical power grid, the application of power electronic-based circuits is gaining more and more importance. It has however been known for a while that interactions of one or multiple converters with resonances in the grid can lead to poorly damped oscillations, and thus, may threaten the stability of parts of the power system. The passivity theory has proven to be particularly powerful in preventing such situations. Accordingly, the stability of the power grid can be guaranteed by design if all components act passive. This means that all active loads and energy feeding converters have an input admittance with a non-negative real part. This can theoretically be achieved using passive or active damping strategies, but most research neglects real-world effects, which arise from the sampling of high-frequency switching harmonics. The aim of this dissertation is therefore to review the complete modeling and analysis of digitally current-controlled grid-connected converters and to extend the controller as well as filter design. On the basis of typical single-input single-output models of the converter’s input admittance, methods for the design of a passive damping or an active feed-forward are proposed and it is discussed which aspects have to be considered when implementing the filters. However, since the used models cannot reproduce all alias effects, in the further part of the thesis a multiple-input multiple-output converter model is developed. It is shown that the mirroring of high-frequency signal components onto low-frequency components can in principle be described by a dynamic uncertainty that affects the behavior of the converters baseband dynamics. Due to this new insight it becomes clear which criteria passive or active filters should fulfill in order to specifically counteract the often negative mirroring effects of digital control. Finally, it is demonstrated that a robust passivation of the converter input admittance can prevent a destabilization of the power system by harmonics for a large number of grid impedances. The presented theory and the developed controller design are illustrated and verified by various simulations of an exemplary converter system.

Volume None
Pages None
DOI 10.24355/DBBS.084-202109080957-0
Language English
Journal None

Full Text