ArXiv | 2021

Attitude Trajectory Optimization for Agile Satellites in Autonomous Remote Sensing Constellation

 
 
 
 
 

Abstract


Agile attitude maneuvering maximizes the utility of remote sensing satellite constellations. By taking into account a satellite’s physical properties and its actuator specifications, we may leverage the full performance potential of the attitude control system to conduct agile remote sensing beyond conventional slew-and-stabilize maneuvers. Employing a constellation of agile satellites, coordinated by an autonomous and responsive scheduler, can significantly increase overall response rate, revisit time and global coverage for the mission. In this paper, we use recent advances in sequential convex programming (SCP) based trajectory optimization to enable rapid-target acquisition, pointing and tracking capabilities for a scheduler-based constellation. We present two problem formulations. The Minimum-Time Slew Optimal Control Problem determines the minimum time, required energy, and optimal trajectory to slew between any two orientations given nonlinear quaternion kinematics, gyrostat and actuator dynamics, and state/input constraints. By gridding the space of 3D rotations and efficiently solving this problem on the grid, we produce lookup tables or parametric fits off-line that can then be used on-line by a scheduler to compute accurate estimates of minimum-time and maneuver energy for real-time constellation scheduling. The estimates allow an optimization-based scheduler to produce target-remote-sensing and data-downlinking schedules that are dynamically feasible for each satellite and optimal for the constellation. The Minimum-Effort Multi-Target Pointing Optimal Control Problem is used on-line by each satellite to produce continuous attitude-state and control-input trajectories that realize a given schedule while minimizing attitude error and control effort. The optimal trajectory may then be achieved by a low-level tracking controller. This onboard trajectory generation and tracking scheme is possible due to realtime, efficient SCP implementations. We demonstrate our approach with a numerical example that uses simulation data for a reference satellite in Sun-synchronous orbit passing over globallydistributed, Earth-observation targets.

Volume abs/2102.07940
Pages None
DOI 10.2514/6.2021-1470
Language English
Journal ArXiv

Full Text