Archive | 2021

A Data-Driven Approach to Evaluate Fracturing Practice in Tight Sandstone in Changqing Field

 
 
 
 
 
 
 

Abstract


\n Unconventional reservoirs such as shale and tight sandstones that with ultra-low permeability, are becoming increasingly significant in global energy structures (Pejman T, et al., 2017). For these reservoirs, successful hydraulic fracturing is the key to extract the hydrocarbon resources efficiently and economically. However, the intrinsic mechanisms of fracturing growth in the tight formations are still unclear. In practice, fracturing design mainly depends on hypothetical models and previous experience, which leads to difficulties in evaluating the performance of the fracturing jobs. Therefore, an improved method to optimize parameters for fracturing is necessary and beneficial to the industry.\n In this paper, a data-driven approach is used to evaluate the factors that dominate the production rate from tight sandstone formation in Changqing Field which is the largest oil field in China. In the model, the input parameters are classified into two categories: controllable parameters (e.g. stage numbers, fracturing fluid volume) and uncontrollable parameters (e.g. formation properties), and the output parameter is the accumulated oil production of the wells. Data for more than 100 wells from different formations and zones in Changqing Field are collected for this study. First, a stepwise data mining method is used to identify the correlations between the target parameter and all the available input parameters. Then, a machine learning model is developed to predict the well productivity for a given set of input parameters accurately.\n The model is validated by using separate data-sets from the same field. An optimize algorithm is combined with the data-driven model to maximize the cumulative oil production for wells by tuning the controllable parameters, which provides the optimized fracturing design. By using the developed model, low productivity wells are identified and new fracturing designs are recommended to improve the well productivity.\n This paper is useful for understanding the effects of designed fracturing parameters on well productivity in Changqing Oilfield. Furthermore, it can be extended to other unconventional oil fields by training the model with according data sets. The method helps operators to select more effective parameters for fracturing design, and therefore reduce the operation costs for fracturing and improve the oil and gas production.

Volume None
Pages None
DOI 10.2523/IPTC-21821-MS
Language English
Journal None

Full Text