Archive | 2021

Independent Validation of Generic Specimen Design for Inverse Identification of Plastic Anisotropy

 
 
 
 
 

Abstract


Advanced inverse material identification procedures rely on the richness of strain fields generated in a complex specimen. Currently, the design of a complex specimen is mainly based on engineering judgement and experience that are often user-specific. This intuitive approach forms the crux of the problem, addressed in the current research. To this end, the paper embarks on devising a generic and automated method to design mechanical heterogeneous experiments. A notched tensile specimen is optimized to maximize a previously proposed heterogeneity indicator-IT. The effectiveness of this procedure for identifying the anisotropic parameters of the Hill48 yield criterion is validated using two independent methodologies, namely the identifiability method and the Finite Element Model Updating (FEMU) approach to assess the parameter identification quality. The latter approach is based on carefully generated synthetic experiments including the metrological aspects of Digital Image Correlation (DIC) while having access to the ground truth material behavior. For the plane stress Hill48 anisotropic yield criterion, it is shown that the IT-based design procedure correlates with both the identifiability method and the identification accuracy obtained through FEMU.

Volume None
Pages None
DOI 10.25518/ESAFORM21.2622
Language English
Journal None

Full Text